Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bing-Yu Zhang, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.110$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaqua(5-nitro-1H-benzimidazole- κN^{3})(oxy-diacetato-к $\left.O, O^{\prime}, O^{\prime \prime}\right)$ cobalt(II) monohydrate

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Dashed lines indicate hydrogen bonds.

Figure 2
$\pi-\pi$ stacking of NBZIM rings between neighboring molecules. [Symmetry code: (ii) $1-x, 2-y, 1-z$.]

The nitro group is coplanar with the benzimidazole (BZIM) ring, the maximum atomic deviation being 0.034 (2) \AA for atom O8. The NBZIM ligand coordinates in a monodentate fashion to the $\mathrm{Co}^{\mathrm{II}}$ atom. The $\mathrm{Co}-\mathrm{N} 3$ bond distance of 2.089 (2) \AA in (I) is shorter than the 2.114 (3) \AA found in a corresponding $\mathrm{Co}^{\text {II }}$ complex with the BZIM ligand, $\left[\mathrm{Co}(\mathrm{BZIM})(\text { malonato })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, (Xue et al., 2003).

A partially overlapped arrangement between neighboring parallel NBZIM ligands is observed in (I) (Fig. 2). The face-toface distance of 3.345 (14) \AA is smaller than the 3.42 (2) \AA found in the corresponding $\mathrm{Co}^{\mathrm{II}}$ complex with the BZIM ligand (Xue et al., 2003) and suggests the existence of strong $\pi-\pi$ stacking interactions in (I).

An extensive hydrogen-bonding network occurs in (I) (Fig. 3). Atom H 2 is involved in a bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond (Table 2).

Figure 3
The packing of (I), showing the intermolecular hydrogen bonding (dashed lines).

Experimental

An aqueous solution (15 ml) of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{ODA}$ $(1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ was mixed with an aqueous solution $(5 \mathrm{ml})$ of NBZIM (2 mmol). The solution was refluxed for 4 h and then filtered. Red single crystals of (I) were obtained from the filtrate after 6 d.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=408.19$
Monoclinic, $P 2_{1} / \mathrm{c}$
$a=11.5641$ (5) \AA
$b=10.2592$ (5) \AA
$c=12.7556$ (6) \AA
$\beta=90.3721$ (12) ${ }^{\circ}$
$V=1513.27$ (12) \AA^{3}
$Z=4$
Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.740, T_{\text {max }}=0.902$
14228 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=1.10$
3468 reflections
226 parameters
H -atom parameters constrained
$D_{x}=1.792 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10912
\quad reflections
$\theta=2.4-25.0^{\circ}$
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Plate, red
$0.31 \times 0.20 \times 0.08 \mathrm{~mm}$

3468 independent reflections
2938 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.049 P)^{2}\right. \\
& \quad+1.5881 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Co}-\mathrm{O} 1$	$2.0541(19)$	$\mathrm{Co}-\mathrm{O} 6$	$2.0876(19)$
$\mathrm{Co}-\mathrm{O} 3$	$2.1824(19)$	$\mathrm{Co}-\mathrm{O} 7$	$2.120(2)$
$\mathrm{Co}-\mathrm{O} 4$	$2.103(2)$	$\mathrm{Co}-\mathrm{N} 3$	$2.089(2)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.88	2.715 (3)	164
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.90	1.86	2.746 (3)	171
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 8$	0.90	2.07	2.891 (4)	151
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 5^{\text {ii }}$	0.89	1.76	2.621 (3)	162
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 9^{\text {iii }}$	0.82	2.18	2.998 (3)	173
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1 W^{\text {iv }}$	0.90	1.82	2.709 (3)	171
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 4^{\text {ii }}$	0.86	1.99	2.853 (3)	174
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}$	0.93	2.54	3.069 (4)	116
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {v }}$	0.93	2.31	3.199 (5)	160
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 W^{\text {i }}$	0.93	2.58	3.498 (4)	168

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2} ;$ (iii) $x+1, y, z$; (iv) $-x+1,-y+1,-z+1 ;(\mathrm{v})-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.

C - and N -bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.97$ (methylene) and $0.93 \AA$ (aromatic) and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement as riding atoms with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ applied. Water H atoms were
located in a difference Fourier map and refined as riding in their asfound positions relative to their carrier O atoms, with fixed isotropic displacement parameters of $0.05 \AA^{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Li, Z.-Y., Xu, D.-J., Wu, J.-Y. \& Chiang, M. Y. (2002). J. Coord. Chem. 55, 13971400.

Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Xue, Y.-H., Lin, D.-D. \& Xu, D.-J. (2003). Acta Cryst. E59, m750-m752.

